
MVT, anti-derivatives and integration

November 18, 2016

Problems

Problem 1. Two horses start a race at the same time and finish in a tie. Prove that at some time during
the race they have the same speed. (Hint: MVT.)

Solution: Let s1(t) and s2(t) be two functions that represent the position of the first and the second horse
from the start at time t, respectively. Since both horses start at the same time, s1(0) = s2(0) = 0 (since
they are both at the start at t = 0). Since they finish at a tie, this means it took them the same time t0 to
get to the finish, and so s1(t0) = s2(t0). Consider the function d(t) = s1(t)− s2(t). By MVT (assuming
differentiability of both s1(t) and s2(t), of course) we get

d(t0)− d(0)

t0 − 0
= d′(c) = s′1(c)− s′2(c)

for some c between 0 and t0. But d(t0) = s1(t0)− s2(t0) = 0 and d(0) = s1(0)− s2(0) = 0, so at c we have
s′1(c)− s′2(c) = 0, i.e. s′1(c) = s′2(c). This is exactly what we wanted, since the derivative of the distance is
the velocity.

Problem 2. Let f(x) = 1
x2 , and F (x) be an antiderivative of f with the property F (1) = 1. True or

false: F (−1) = 3.

Solution: False. Since f(x) is not continuous on R, we can pick different constants on (−∞, 0) and
(0,+∞). In other words, an anti-derivative of f(x) does not have to be of the form F (x) = − 1

x +C. If
it were, then F (1) = −1 + C = 1 so C = 2 would give F (−1) = − 1

−1 + 2 = 3. However, one can take, for
example,

F (x) =

{
− 1
x + 2

− 1
x + 100

This is a perfectly good anti-derivative of f(x) with F (1) = 1 but F (−1) 6= 3.

Problem 3. A rocket lifts off the surface of Earth with a constant acceleration of 20 m/sec2. How fast will
the rocket be going 1 minute later?

Solution: Acceleration is given by the derivative of the velocity, a(t) = dv(t)
dt . We are given

a(t) = dv(t)
dt = 20 and so v(t) = 20t+ C for some constant C. Since at the time t = 0 the rocket is not

moving, v(0) = 0, i.e. C = 0. This gives v(t) = 20t. In one minute, the speed will be v(60) = 1200 m/sec2.

Problem 4. Compute the sum
n∑
i=3

(i− 2)2. You can use the formulas we’ve seen in class.

Solution:
n∑
i=3

(i− 2)2 = 12 + 22 + · · ·+ (n− 2)2 =
n−2∑
i=1

i2 = (n−2)(n−1)(2n−3)
6 .
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Problem 5. Compute lim
n→∞

n∑
i=1

1
i(i+1) . (Hint: 1

2·3 = 1
2 −

1
3 )

Solution:

n∑
i=1

1

i(i+ 1)
=

n∑
i=1

1

i
− 1

i+ 1
=

1

1
− 1

2
+

1

2
− 1

3
+ · · ·+ 1

n
− 1

n+ 1
= 1− 1

n+ 1

The last equality is just the result of cancellations: the whole sum “telescopes.” Finally,

lim
n→∞

n∑
i=1

1

i(i+ 1)
= lim
n→∞

(
1− 1

n+ 1

)
= 1

Problem 6. Compute the integral
∫ 2

0
xdx by definition. Verify that this answer is the same as the usual

(geometric) area under the graph of f(x) = x over [0, 2].

Solution: Because f(x) = x is continuous, it is also integrable, and so it does not matter which Riemann
sums to consider. For example, take the upper sum. Split [0, 2] into n intervals of equal length 2

n . Then

i-th interval will be
[
2(i−1)
n , 2in

]
. On this interval, the maximum of the function f(x) = x is attained at the

rightmost point 2i
n , and this maximum value is 2i

n . Thus, the upper sum is

Un =

n∑
i=1

2i

n
· 2

n
=

4

n2

n∑
i=1

i =
4

n2
· n(n+ 1)

2
=

2(n+ 1)

n

Thus, lim
n→∞

Un = lim
n→∞

2(n+1)
n = 2. This coincides with the usual area of the triangle.

Problem 7. We cut a circular disk of radius r into n circular sectors, as shown in the figure, by marking
the angles θi at which we make the cuts (θ0 = θn can be considered to be angle 0). A circular sector
between two angles θi and θi+1 has area 1

2r
2∆θ, where ∆θ = θi+1 − θi.

We let An =
n−1∑
i=0

1
2r

2∆θi. Then the area of the disk, A, is given by

1. An, independent of how many sectors we cut the disk into.

2. lim
n→∞

An.

3.
∫ 2π

0
1
2r

2dθ.

4. all of the above.

Solution: all of the above. Clearly 2. and 3. are equivalent. But lim
n→∞

An = An since both equal simply to

the area of the disk: the sum of the areas of sectors is the area of the whole disk.
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